Digital Surgery Complications

Zeeshan S. Husain, DPM, FACFAS, FASPS
Great Lakes Foot and Ankle Institute
September 21, 2018
Disclosures

• None
Presentation Outline

• **Differentials**
 – Neuroma
 – Plantar plate injury
 – Metatarsalgia
 – Hammertoe

• **Influencing factors**
 – Anatomy
 • Hammertoe
 • Rigidity
 • Plane(s) of deformity

• **Complications**
Presentation Outline

• Differentials
 – Neuroma
 – Plantar plate injury
 – Metatarsalgia
 – Hammertoe

• Influencing factors
 – Anatomy
 • Hammertoe
 • Rigidity
 • Plane(s) of deformity

• Complications

• Treatment options
 – Arthrodesis
 – Tendon transfers
 • Flexor tenotomy
 • Girdlestone-Taylor
 – Variations
 • EDB transfer
 • Hibbs

• What have I learned?
 – Arthroplasty needs to be retired
Plantar Plate

• **Subjective**
 – “Walking on pebble”
 – Wart under foot
 – Pain
 • Under MPJ
 • MPJ effusion

• **Biomechanical**
 – Hammertoe
 – Hallux abductovalgus
 – Elongated 2nd metatarsal1
 – Equinus

• **Iatrogenic**
 – Steroid2

Differential Diagnoses

- **Misdiagnosis**
 - Capsulitis / Synovitis
 - Freiberg’s disease
 - Arthritides
 - Stress fracture
 - **Neuroma**¹
 - Single 97/279
 - 3rd interspace 74.2%
 - Multiple 182/279
 - 2nd interspace 98.9%
 - 3rd interspace 100.0%

The Plantar Plate

Plantar plate function
- Stabilize MPJ with lumbricales and FDL
- Resists DF tensile forces
- Offers gliding surface for flexor tendons
 - **Weakest at base of phalanx**
 - Assists Windlass mechanism

Lachman test
- DF toe at 25°
- Translate dorsally / plantarily

Staging MPJ Instability

- **Stage 1**
 - Subtle edema with pain to plantar MPJ
 - Most (70-90%) alleviate in several days

- **Stage 2**
 - Moderate edema
 - Radiographic deviation of digit
 - Loss of toe purchase
 - Poor response to conservative treatment

- **Stage 3**
 - Moderate edema
 - Frank subluxation/dislocation
 - Often seen with HAV deformity
 - Rarely responds to conservative treatment

Staging MPJ Instability

• **Grade 0- No instability**
 - No joint pain, thickening, or swelling
 - Prodromal phase but no deformity

• **Grade 1- Mild instability**
 - Synovitis and mild deviation
 - Positive drawer sign without significant deformity

• **Grade 2- Moderate instability**
 - Dorsomedial deviation/subluxation
 - Positive drawer sign with deformity

• **Grade 3- Dislocated MPJ**
 - Positive drawer sign with cross-over deformity

• **Grade 4- Rigid dislocated MPJ**

Imaging

- Radiographs
- Ultrasound
 - Dynamic
- Arthrogram
- MRI
Imaging

- Radiographs
- **Ultrasound**
 - Dynamic
- Arthrogram
- MRI

![Image of ultrasound with annotations](image)

- Base of phalanx
- MTH
Imaging

- Radiographs
- **Ultrasound**
 - Dynamic
- Arthrogram
- MRI
Imaging

- Radiographs
- **Ultrasound**
 - Dynamic
- Arthrogram
- MRI
Imaging

- Radiographs
- Ultrasound
 - Dynamic
- Arthrogram
- MRI
Imaging

- Radiographs
- Ultrasound
 - Dynamic
- Arthrogram
- MRI

Imaging

- Radiographs
- Ultrasound
 - Dynamic
- Arthrogram
- MRI
Hammertoe Complications

- **Reproducibility**
 - Predictable results
 - Arthrodesis
 - Retire the arthroplasty

- **Typical complications**
 - Incision contracture
 - Prolonged swelling
 - Floating toe
 - Poor purchase
 - Deviated toe if performing arthroplasty
 - Issues with K-wires
Hammertoe Complications

• **Reproducibility**
 – Predictable results
 • Arthrodesis
 – Retire the arthroplasty

• **Typical complications**
 – Incision contracture
 – Prolonged swelling
 – Floating toe
 – Poor purchase
 – Deviated toe if performing arthroplasty
 – Issues with K-wires

• **Proposed algorithm**
 – Rigid?
 • PIPJ arthrodesis
 – Flexible?
 • Restore MPJ and PIPJ congruency with tendon transfer(s)

 – **Goals**
 • Restore FDL function
 • Joint congruency
 • Correct transverse plane deformity

• **Typical complications**
 – Incision contracture
 – Prolonged swelling
 – Floating toe
 – Poor purchase
 – Deviated toe if performing arthroplasty
 – Issues with K-wires
Literature

• Revision of failed foot surgery: a critical analysis
 – $n = 244$
 – Most common reason for revision
 • Transfer metatarsalgia
 • Recurrent bunion
 • Lesser digit deformity
 – Satisfaction rates after revision
 • Revisions- 176/244
 • 24% with reservations
 • 6% dissatisfied

• **Complications of digital and lesser metatarsal surgery**
 – Risk factors and co-morbidities
 – Wound healing and infectious complications
 – Smoking
 – Implant failure and management
 – Acute digital correction of longstanding toe deformities
 – AVN of lesser metatarsals following surgery
 – Floating and flail toe deformity

Distal Metatarsal Osteotomy

• **Indications**
 - Metatarsalgia
 - Metatarsal parabola
 - Plantar plate techniques

• **Floating toe rates**
 - Migues, *et al.*
 - Incidence
 - Osteotomy alone 28.5%
 - With digital correction 50.0%
 - Highlander, *et al.*
 - Incidence
 - Floating toe 36.0%

Malposition

• **Considerations**
 – Level of deformity
 – Influence of adjacent digits
 – Osseous versus soft tissue
Optimizing Results

- **Recognizing pathology**
 - Anatomy
 - Plantar plate injury?
 - Rigidity
 - Plane(s) of deformity

- **Predictable outcomes**
 - Arthrodesis
 - Tendon transfers
 - FDL
 - EDB
Case Scenario- Plantar Plate

- Direct plantar approach
Case Scenario - Plantar Plate

- **Dorsal surgical approach**
 - Metatarsal osteotomy
 - Plantar plate exposure
 - Suture plantar plate
 - Phalanx suture tunnels
 - Tension repair
 - Metatarsal fixation
Case Scenario - Plantar Plate

- **Dorsal surgical approach**
 - Metatarsal osteotomy
 - Plantar plate exposure
 - Suture plantar plate
 - Phalanx suture tunnels
 - Tension repair
 - Metatarsal fixation
Case Scenario - Plantar Plate

- **Dorsal surgical approach**
 - Metatarsal osteotomy
 - Plantar plate exposure
 - Suture plantar plate
 - Phalanx suture tunnels
 - Tension repair
 - Metatarsal fixation
Case Scenario - Plantar Plate

- **Dorsal surgical approach**
 - Metatarsal osteotomy
 - Plantar plate exposure
 - Suture plantar plate
 - Phalanx suture tunnels
 - Tension repair
 - Metatarsal fixation
Case Scenario - Plantar Plate

- **Dorsal surgical approach**
 - Metatarsal osteotomy
 - Plantar plate exposure
 - Suture plantar plate
 - Phalanx suture tunnels
 - Tension repair
 - Metatarsal fixation
Case Scenario- Plantar Plate

• **Dorsal surgical approach**
 – Metatarsal osteotomy
 – Plantar plate exposure
 – Suture plantar plate
 – Phalanx suture tunnels
 – Tension repair
 – Metatarsal fixation
Case Scenario- Plantar Plate

- **Dorsal surgical approach**
 - Metatarsal osteotomy
 - Plantar plate exposure
 - Suture plantar plate
 - Phalanx suture tunnels
 - Tension repair
 - Metatarsal fixation
Case Scenario - Plantar Plate

- **What did I do?**
 - Repaired attenuated ligament
 - Will it hold?

- **Alternative**
 - FDL tendon transfer

Pre-op

Post-op

Reinforce correction with steri-strips
Case Scenario- FDL Transfer

- **Surgical approach**
 - PIPJ preparation
 - FDL tendon
 - Bone tunnel
 - Tension tendon
 - Bone anchor
Case Scenario- FDL Transfer

- **Surgical approach**
 - PIPJ preparation
 - FDL tendon
 - Bone tunnel
 - Tension tendon
 - Bone anchor
Case Scenario - FDL Transfer

- Surgical approach
 - PIPJ preparation
 - FDL tendon
 - Bone tunnel
 - Tension tendon
 - Bone anchor
Case Scenario- FDL Transfer

- **Surgical approach**
 - PIPJ preparation
 - FDL tendon
 - Bone tunnel
 - Tension tendon
 - Bone anchor
Case Scenario- FDL Transfer

- **Surgical approach**
 - PIPJ preparation
 - FDL tendon
 - Bone tunnel
 - Tension tendon
 - Bone anchor
Case Scenario- FDL Transfer

• Surgical approach
 – PIPJ preparation
 – FDL tendon
 – Bone tunnel
 – Tension tendon
 – Bone anchor
Case Scenario - FDL Transfer

• Surgical approach
 – PIPJ preparation
 – FDL tendon
 – Bone tunnel
 – Tension tendon
 – Bone anchor
Case Scenario- EDB Transfer

• Surgical approach
 – Metatarsal bone tunnel
 • Pass suture under deep intermetatarsal ligament
 – Proximal phalanx bone tunnel
 – Adjust tension

Case Scenario- EDB Transfer

• Surgical approach
 – Metatarsal bone tunnel
 • Pass suture under deep intermetatarsal ligament
 – Proximal phalanx bone tunnel
 – Adjust tension

Case Scenario- EDB Transfer

- **Surgical approach**
 - Metatarsal bone tunnel
 - Pass suture under deep intermetatarsal ligament
 - Proximal phalanx bone tunnel
 - Adjust tension

Case Scenario- EDB Transfer

• **Surgical approach**
 – Metatarsal bone tunnel
 • Pass suture under deep intermetatarsal ligament
 – Proximal phalanx bone tunnel
 – Adjust tension

Case Scenario- EDB Transfer

- **Surgical approach**
 - Metatarsal bone tunnel
 - Pass suture under deep intermetatarsal ligament
 - Proximal phalanx bone tunnel
 - Adjust tension

Post-operatively

- **Cicatrix contracture**
- **Splintage**
 - K-wire
 - Bandaging
 - Taping
 - Splinting
- **Weightbearing status**
 - Surgical shoe
Conclusions

- **Accurate diagnosis**
 - Determine deforming factors

- **Balance expectations**

- **Be definitive on surgical procedures**
 - Arthrodesis
 - Tendon transfers
Annual Surgical Conference 2018

Thank You

Zeeshan S. Husain, DPM, FACFAS, FASPS
zee@alum.mit.edu