Surgical Management of Forefoot Trauma

Dr. Andrew M. Belis, DPM, FACFAS, FASPS

- Fellowship Director, OCF Foot and Ankle Surgical Fellowship
- Board Certified, Foot Surgery
- Board Certified, Rearfoot and Ankle Reconstructive Surgery
- Associate Professor, Florida State University
- Vice Chairman, American Society of Podiatric Surgeons (ASPS)
- President, Florida Podiatric Medical Association (FPMA)

Orthopedic Center of Florida
Fort Myers, FL
www.ocfla.net
Dr.Belis@ocfla.net
Cell: 239-699-1356
Objectives

Attendees should increase their knowledge in the following:

- Common forefoot injuries
- Indications for surgery in forefoot injuries
- Contraindication to surgery in forefoot trauma
- Surgical management of Various forefoot injuries
- Concepts in fixation for various surgical treatments in forefoot trauma
Prevention of Foot Injuries

Lawnmower Barefoot
Puncture Wounds
Puncture Wounds

<table>
<thead>
<tr>
<th>Immunization Data</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never immunized</td>
<td>TIG 250IM + dT</td>
</tr>
<tr>
<td>Immunized + Dirty Wound</td>
<td>dT booster if last booster >5yrs</td>
</tr>
<tr>
<td>dT boosters</td>
<td>Every 10 years</td>
</tr>
</tbody>
</table>
Puncture Wounds (Green and Bruno)

- **Type I:**
 - early diagnosis
 - Surgical drainage and debridment
 - Appropriate abx coverage

- **Type II:**
 - a delay in diagnosis from 9-14 days.
 - Surgical debridment
 - appropriate abx coverage will eradicate
 - Possible bone involvement

- **Type III:**
 - Delay in diagnosis > 3 weeks
 - Chronic infection
 - Possible bone resection
Open Fracture Classification

<table>
<thead>
<tr>
<th>Type I:</th>
<th>Type II:</th>
<th>Type I + II:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Clean</td>
<td>• Moderate contamination</td>
<td>• Ancef x 3 days</td>
</tr>
<tr>
<td>• < 1 cm</td>
<td>• > 1 cm</td>
<td></td>
</tr>
<tr>
<td>• Little Soft tissue</td>
<td>• Moderate comminution</td>
<td></td>
</tr>
<tr>
<td>involvement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• No crush</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Open Fracture Classification

Type III:
- Highly contaminated
- > 5 cm
- Extensive soft tissue involvement
- Severe comminution
- Ancef + Aminoglycoside x 3 days
- If Surgery, add 3 additional days

IIIA:
- Adequate soft tissue coverage

IIIB:
- Not enough soft tissue coverage with extensive periosteal stripping

IIIC:
- Arterial injury may progress to amputation
Toe Fractures
Proximal Phalanx

Distal Phalanx
First MPTJ Dislocation Injury:

- **Jahss Classification**
 - **Type I**: dorsal dislocation of the proximal phalanx and sesamoids with the intersesamoidal ligament intact
 - **Type IIA**: dorsal dislocation of the proximal phalanx and the sesamoids with rupture of the intersesamoidal ligament
 - **Type IIB**: dorsal dislocation of the proximal phalanx and the sesamoids with transverse fracture of one of the sesamoids and rupture of the intersesamoidal ligament
 - **Type IIC**: dorsal dislocation of the proximal phalanx and the sesamoids with complete disruption of the intersesamoidal ligament and fracture of both sesamoids
Jahss – Type I

• Dorsal dislocation of proximal phalanx and sesamoids with the intersesamoids ligament intact
 – Closed reduction usually unsuccessful
 – ORIF required
 • Dorsal linear incision
 • BK cast 3-4 weeks
Jahss – Type II

- Dorsal dislocation of proximal phalanx and sesamoids with rupture of the inter-sesamoids ligament
 - Type IIA- no fracture of sesamoids
 - Type IIB- transverse fracture of sesamoid

- Treatment: Closed reduction
 - Type IIB – distal fracture fragments or whole sesamoid may need to be excised
 - Type IIC –
Nail Injuries

Rosenthal Classification

Zone I: Distal to the phalanx
Zone II: Distal to the lunula
Zone III: Proximal to the distal end of the lunula
Workman’s Comp
Sesamoid Fractures
Plantar Plate Tears

• Etiology:
 – Chronic excessive metatarsal pressure
 • Shoe Gear
 • Long Second
 • Hypermobile 1st TMT
 – Trauma
 – Inflammatory Arthritis
 – Corticosteroid injections
Plantar Plate Tear - Diagnostic

• Ultrasound:
 – Normal plantar plate = homogeneous hyperechoic band arching over metatarsal head
 – Torn = discontinuous or heterogeneously hypoechoic

• MRI:
 – Normal plantar plate =
 • hypointense on all pulse sequences, and uniform in morphology
 – Torn plantar plate =
 • increased intrasubstance signal in distal plantar plate
 • Signal without discontinuity may indicate degenerative change, particularly on longer TE sequences.
Diagnosis of Plantar Plate Tear

Diagnostic:

– Clinical:
 • Positive Draw Sign (toe DF 25 degrees)
 • Gaping of toes

Staging:

– Ultrasound
– Arthrogram
– MRI
Procedure Options

1. **Conservative Care**
2. **Primary Plate Repair through plantar approach**
3. **Weil Osteotomy (Grade 0-1)**
4. **Weil Osteotomy and Plantar Plate Repair w/ Dorsal Approach**
5. **Flexor Tendon Transfer with or without PIPJ Fusion**
Plantar Approach

• Indications:
 – < 4-mm second met
 – SCAR on plantar
 – Mostly used in acute trauma
 – Fiberwire /Corkscrew

• The Direct Plantar Plate Repair Technique: Jeffrey E. McAlister and Christopher F. Hyer,. Foot Ankle Spec, September 2013
CPR Technique

- .062” K-wire from phalanx
- Crossing drill tunnels:
 - dorsal medial to plantar lateral
 - dorsal lateral to plantar medial
 - parallel holes can also be employed.
5th Metatarsal Fracture Patterns

• One of most frequent injuries
• Evidence:
• Zone I (avulsion fractures):
 • Even multi-fragmented, displaced and intra-articular fractures give good results with conservative care
• Zone II (Jones’):
 • Have good to excellent results with functional treatment
• Zone III (Met-Diaph):
 • Better results with surgery
Nutrient artery

Metaphyseal arteries

Periosteal blood supply
5th met base fracture?

• Don’t forget to evaluate for Cavus foot type!!!

• May need to correct Cavus
Instrumentation:
• Solid or Cannulated
• Recommend solid
• Superimpose screw to get ideal diameter
• Should grab internal cortex
• 4.5, 5.5, 6.5 mm
Specialty Plates with Hook
Do you fix these?
Metatarsal Neck Fx

Facts:

• Usually Displace Plantar
• May require reduction and fixation:
 • Closed reduction and Pinning
 • Open Reduction and Pinning
 • ORIF with plate
Avascular Necrosis of the 2nd Metatarsal:

- Freiberg
 - Type I: no DJD; articular cartilage intact
 - Type II: peri-articular spurs; articular cartilage intact
 - Type III: severe DJD; loss of articular cartilage
 - Type IV: epiphyseal dysplasia, multiple head involvement
Metatarsal Shaft Trauma
• Soft Tissue Viability
 – If unacceptable then consider K-Wire fixation
 – Must be stable proximally so may need to extend into TMT or Cuboid
• Soft Tissue Viability
 – If acceptable:
 • Bridge plating
 • Bi-cortical
 • Do not invade joint
Stress Fractures

- 17yo ballet dancer
- increasing pain in her forefoot with dancing.
- No pain with walking.
- Pain improved some with a week of rest, but returned when she started dancing again.
 - Focal tenderness over the 2nd metatarsal
Metatarsal Stress Fractures

• Risk Factors
 – High arches
 – Repetitive impact activity (running, marching, dancing)

• Avoidance of painful weight-bearing
 – Non-weight-bearing with crutches if pain with walking

• Slow return to normal activity when pain free with walking and to palpation over the stress injury
 – May need orthoses to help prevent future injury
Gunshots

Velocity

- Energy $= \frac{1}{2} mv^2$
- Energy increases by the square of the velocity and linearly with the mass
- Velocity of missile is the most important factor determining amount of energy and subsequent tissue damage
Gunshots

Wounding Power

• Low velocity, less severe
 – Less than 1000 ft/sec
 – Less than 230 grams

• High velocity, very destructive
 – Greater than 2000 ft/sec
 – Weight less than 150 grams

• Shotguns, very destructive at close range
 – About 1200 ft/sec
 – Weight up to 870 grams
Gunshot Wounds (Ordog)

- Type O: No injury (blood splatter)
- Type I: Blunt injury (non-penetrating)
 - Bulletproof vest, thick clothing, shoe gear
- Type II: Graze injury (abrasion, injury to epidermis, superficial dermis)
- Type III: Blast effect without missile penetration (bullet missed, blank ammunition at very close)
- Type IV blast effect with missile penetration
- Type V: Penetration
 - A: Laceration through dermis
 - B: Sub-cutaneous
 - C: All deep structures
 - D: Body cavity
 - E: More than one body region
- Type VI: Perforating
- Type VII: Penetrating with missile embolization
Conclusions

• Tissue damage and contamination dependent upon missile energy
• Careful vascular assessment mandatory
• High velocity and shotgun blasts require surgical debridement or if joint involvement or retained metal or bone displacement
• Recommend all victims treated with antibiotics (Knapp, JBJS 1996)
 – IV not indicated unless prophylaxis for surgery
 – Oral abx x 72 hours as effective as IV
• Fracture extension, fragmentation common
 – Many require surgical stabilization d/t instability
 – Indirect reduction, internal fixation recommended for diaphyseal injuries
Compartment Syndrome
Presentation

• Symptoms
 • pain out of proportion to injury
• Physical exam
 • pain with dorsiflexion of toes (MTPJ)
 • places intrinsic muscles on stretch
 • tense swollen foot
• loss of two-point discrimination
• pulses
• presence of pulses does not exclude diagnosis
Operative Treatment

• Operative
 – emergent foot fasciotomies
• Compartment measurements with absolute value of 30-45 mm Hg
• compartment measurements within 30 mm Hg of diastolic blood pressure (delta p)
• intraoperatively, diastolic blood pressure may be decreased from anesthesia
• must compare intra-operative measurement to pre-operative diastolic pressure
I complained I had no shoes until I met a man who had no feet!